Bagging

Bagging (Bootstrap Aggregating) ist eine Methode des Ensemble-Lernens, die verwendet wird, um die Vorhersagegenauigkeit von Modellen zu verbessern. Sie besteht darin, mehrere Modelle auf unterschiedlichen Teilmengen von Trainingsdaten zu trainieren und ihre Vorhersagen zu aggregieren. Bagging wird häufig in Entscheidungsbäumen und Random Forests eingesetzt.


» Glossar