Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

E

Edge Computing

Edge Computing ist ein Ansatz, bei dem Datenverarbeitung und -speicherung dezentralisiert auf Geräten in der Nähe der Datenquelle erfolgen, anstatt sie an entfernte Server zu senden. Dies kann die Latenz reduzieren und die Effizienz von IoT-Systemen verbessern.



Eingabeschichten

Die Eingabeschicht (engl. input-layer) ist die erste Schicht eines neuronalen Netzes. Sie besteht aus einer bestimmten Anzahl an Eingabeneuronen (engl. input-nodes). Die Größe der Eingabeschicht hängt von den Eingabedaten ab.



End-to-End-Lösung

Eine End-to-End-Lösung ist eine vollständige Lösung für ein bestimmtes Problem, die alle Schritte von Anfang bis Ende umfasst. Im Kontext von KI in der Produktion könnte eine End-to-End-Lösung beispielsweise aus Datenverarbeitung, Modellbildung, Implementierung und Überwachung bestehen.



Ensemble Learning

Ensemble Learning ist eine Methode des maschinellen Lernens, bei der mehrere Modelle zusammenarbeiten, um eine Vorhersage zu treffen. Indem man die Vorhersagen der verschiedenen Modelle aggregiert, kann man die Vorhersagegenauigkeit erhöhen und das Risiko von Fehlern verringern.



Entscheidungsbaum

Ein Entscheidungsbaum ist ein Diagramm, das Entscheidungen auf der Grundlage von Bedingungen darstellt. Er besteht aus einem Wurzelknoten, der die Eingangsvariablen darstellt, und verschiedenen Zweigen, die die Bedingungen und Entscheidungen repräsentieren. Entscheidungsbäume werden häufig in der künstlichen Intelligenz und der Datenanalyse eingesetzt, um Vorhersagemodelle zu erstellen.



Epochen

Epochs beschreiben die Anzahl vollständiger Datendurchläufe durch ein neuronales Netz.